Azərbaycanca AzərbaycancaБеларускі БеларускіDansk DanskDeutsch DeutschEspañola EspañolaFrançais FrançaisIndonesia IndonesiaItaliana Italiana日本語 日本語Қазақ ҚазақLietuvos LietuvosNederlands NederlandsPortuguês PortuguêsРусский Русскийසිංහල සිංහලแบบไทย แบบไทยTürkçe TürkçeУкраїнська Українська中國人 中國人United State United StateAfrikaans Afrikaans
Support
www.wp1.da-dk.nina.az
  • Wikipedia

For alternative betydninger se Interval Se også artikler som begynder med Interval Der er ingen kildehenvisninger i denn

Interval (matematik)

Interval (matematik)
www.wp1.da-dk.nina.azhttps://www.wp1.da-dk.nina.az
image For alternative betydninger, se Interval. (Se også artikler, som begynder med Interval)
Der er ingen kildehenvisninger i denne artikel, hvilket er et problem. Begrundelsen kan findes på diskussionssiden eller i artikelhistorikken. Du kan hjælpe ved at angive kilder til de påstande, der fremføres. Hvis ikke der tilføjes kilder, vil artiklen muligvis blive slettet (november 2020) (Lær hvordan og hvornår man kan fjerne denne skabelonbesked)

Et interval er i matematiske sammenhænge en delmængde bestående af samtlige reelle tal, der ligger mellem to givne tal, kaldet endepunkter. Disse to tal, der udgør grænserne for intervallet, kan enten være en del af eller stå uden for intervallet, og man skelner således mellem åbne, halvåbne og lukkede intervaller.

Der findes lidt forskellige standarder for hvordan intervaller angives.

Dansk notation

Intervaller skrives som de to tal, der angiver endepunkterne, adskilt af et semikolon (;), og omgivet af klammer (kantede parenteser), [ og ]. klammerne bruges til at markere, om de angivne endepunkter er en del af eller står uden for intervallet: Vender en klamme ind imod et tal, ligger tallet i intervallet. Vender klammen væk fra tallet, ligger tallet lige akkurat ikke i intervallet. Nogle eksempler:

  • Intervallet [2;5] omfatter tallene 2 og 5, og samtlige reelle tal der ligger imellem de to.
  • I intervallet ]2;5] står 2 lige akkurat uden for intervallet, mens samtlige tal, der er blot den mindste smule større end 2, og samtidig mindre end eller lig med 5, er en del af intervallet...
  • Intervallet [2;5[ omfatter tallet 2, men lige akkurat ikke tallet 5.
  • Intervallet ]2;5[ omfatter ingen af tallene 2 og 5, men alle tal der er større end 2 og samtidig mindre end 5.

Formelt gælder altså:

[a;b]={x∈R∣a≤x≤b}{\displaystyle [a;b]=\{x\in \mathbb {R} \mid a\leq x\leq b\}}image,
]a;b]={x∈R∣a<x≤b}{\displaystyle ]a;b]=\{x\in \mathbb {R} \mid a<x\leq b\}}image,
[a;b[={x∈R∣a≤x<b}{\displaystyle [a;b[=\{x\in \mathbb {R} \mid a\leq x<b\}}image,
]a;b[={x∈R∣a<x<b}{\displaystyle ]a;b[=\{x\in \mathbb {R} \mid a<x<b\}}image.

Alternativ notation

Mange steder i udlandet samt i computerprograrmmer bruges noget afvigende standarder for angivelse af intervaller. Ofte bruges komma til at adskille intervalendepunkterne, hvilket ikke vil fungere på dansk, hvor komma bruges som decimalseparator. I stedet for udadvendte klammer benyttes indadvendte runde parenteser. Indadvendte klammer bruges overalt til at angive at et endepunkt er med i intervallet. Eksemplet foroven kan derfor også skrives som:

[a;b]={x∈R∣a≤x≤b}{\displaystyle [a;b]=\{x\in \mathbb {R} \mid a\leq x\leq b\}}image,
(a;b]={x∈R∣a<x≤b}{\displaystyle (a;b]=\{x\in \mathbb {R} \mid a<x\leq b\}}image,
[a;b)={x∈R∣a≤x<b}{\displaystyle [a;b)=\{x\in \mathbb {R} \mid a\leq x<b\}}image,
(a;b)={x∈R∣a<x<b}{\displaystyle (a;b)=\{x\in \mathbb {R} \mid a<x<b\}}image.

Eftersom runde parenteser altid vender indad mod intervallets endepunkter, giver det sig selv, at den første linje ikke kan skrives med runde parenteser, da kun klammer skifter mellem at være inklusive og eksklusive alt afhængig af hvilken retning, de vender, og om de står før eller efter intervallets endepunkter.

Åbne, halvåbne og lukkede intervaller

Et interval som eksemplet [2;5], hvor begge de angivne tal er "med i" intervallet, omtales som et lukket interval, mens intervaller hvor ingen af de afgrænsende tal er en del af intervallet, som eksemplet ]2;5[, kaldes for et åbent interval. I de andre to eksempler er det ene tal en del af intervallet, mens det andet står udenfor, og begge omtales som halvåbne intervaller.

Ubegrænsede intervaller

Der findes også ubegrænsede intervaller, der er uendeligt lange. Med kun ét endepunkt findes åbne intervaller af typen ]a;∞[{\displaystyle \left]a;\infty \right[}image og ]−∞;b[{\displaystyle \left]-\infty ;b\right[}image samt lukkede af typen [a;∞[{\displaystyle \left[a;\infty \right[}image og ]−∞;b]{\displaystyle \left]-\infty ;b\right]}image.

Intervallet ]−∞;∞[{\displaystyle \left]-\infty ;\infty \right[}image (alle reelle tal) har ingen endepunkter og er derfor både åbent og lukket.

Bemærk at overalt hvor "uendelig" (∞{\displaystyle \infty }image) eller "minus uendelig" (−∞{\displaystyle -\infty }image) indgår, er disse to værdier aldrig "med" i intervallet; den kantede parentes skal per konvention altid "vende væk" fra ∞{\displaystyle \infty }image eller −∞{\displaystyle -\infty }image.

Degenererede intervaller

Etpunktsmængder af typen {a} samt den tomme mængde Ø er også delmængder af de reelle tal, men de opfattes normalt ikke som "rigtige" intervaller. Men hvis man tager disse degenererede intervaller og de "rigtige" intervaller under ét, har man en beskrivelse af netop de sammenhængende mængder af reelle tal.

image Denne artikel bør gennemlæses af en person med fagkendskab for at sikre den faglige korrekthed.

wikipedia, dansk, wiki, bog, bøger, bibliotek, artikel, læs, download, gratis, gratis download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, billede, musik, sang, film, bog, spil, spil, mobile, Phone, Android, iOS, Apple, mobiltelefon, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, sonya, mi, PC, web, computer

Udgivelsesdato: December 01, 2024, 07:50 am
De fleste læses
  • Kan 10, 2025

    Ordkløvere

  • Kan 10, 2025

    Order of the Bath

  • Kan 17, 2025

    Ortogonalitet

  • Kan 07, 2025

    Oprindelige taiwanere

  • Kan 07, 2025

    Oppland fylke

Daglige
  • Filminstruktør

  • Per Pallesen

  • Afdeling Q

  • Svend Gønge

  • Bodilprisen

  • Kassøværket

  • Aabenraa

  • Kurdistans Arbejderparti

  • Tyrkiet

  • Natly

NiNa.Az - Studio

  • Wikipedia

Tilmelding af nyhedsbrev

Ved at abonnere på vores mailingliste vil du altid modtage de seneste nyheder fra os.
Kom i kontakt
Kontakt os
DMCA Sitemap Feeds
© 2019 nina.az - Alle rettigheder forbeholdes.
Ophavsret: Dadaş Mammedov
Top