Azərbaycanca AzərbaycancaБеларускі БеларускіDansk DanskDeutsch DeutschEspañola EspañolaFrançais FrançaisIndonesia IndonesiaItaliana Italiana日本語 日本語Қазақ ҚазақLietuvos LietuvosNederlands NederlandsPortuguês PortuguêsРусский Русскийසිංහල සිංහලแบบไทย แบบไทยTürkçe TürkçeУкраїнська Українська中國人 中國人United State United StateAfrikaans Afrikaans
Support
www.wp1.da-dk.nina.az
  • Wikipedia

Hypoteseprøvning eller hypotesetest er en statistisk metode der benyttes til at undersøge om en hypotese understøttes el

Hypoteseprøvning

Hypoteseprøvning
www.wp1.da-dk.nina.azhttps://www.wp1.da-dk.nina.az

Hypoteseprøvning (eller hypotesetest) er en statistisk metode, der benyttes til at undersøge om en hypotese understøttes eller ej af en stikprøve. Det er de færreste tilfælde, hvor en stikprøve følger hypotesen (for eksempel en fysisk lov) uden afvigelse. Hypotesetest bruges til at afgøre om afvigelserne kan antages at skyldes målefejl, eller om stikprøven ikke passer med hypotesen. Den hypotese, som undersøges, kaldes den tentative hypotese og benævnes H0 (nulhypotese). Der opstilles en alternativ hypotese benævnt H1, som er en negation af H0. Resultatet af en hypotesetest er enten en afvisning eller accept af den alternative hypotese.

Ved hypotesetest kan der begås to slags fejl, alt efter hvilken hypotese der vælges og hvad der i virkeligheden gælder. Accepteres den alternative hypotese, selvom den ikke holder, kaldes fejlen type 1 fejl. Sandsynligheden for dette benævnes α og kaldes også signifikansniveauet for testen. Type 2 fejl er, hvis den alternative afvises selvom den er sand og har sandsynlighed β. Før testen vælges signifikansniveauet α, mens β kan udregnes ud fra α og stikprøvens størrelse. Oftest benyttes α = 5% som signifikansniveau.

Sandsynligheden for at acceptere den alternative hypotese når den alternative hypotese er sand, kaldes styrken og benævnes 1-β. Styrken afhænger af fordelingen for Z under den alternative hypotese og skal gerne være så stor som mulig.

Når en hypotese udføres, regnes en teststørrelse, som sammenlignes med en sandsynlighedsfordeling. Teststørrelsen slås op i sandsynlighedsfunktionen, hvor resultatet kaldes p-værdien. Den nøjagtige værdi behøver ikke at blive fundet. Det er nok at vide, at p-værdien er mindre end den α. En test kaldes statistisk signifikant på niveau α, hvis p-værdien er mindre end α (og den alternative hypotese dermed accepteres). Teststørrelsen og sandsynlighedsfordelingen afhænger af hvilken test, der er tale om.

Z-test

Z-testen er en statistisk afprøvning, der bruges til at afgøre forskellen mellem gennemsnittet på en stikprøve og et på forhånd kendt gennemsnit for populationen er tilstrækkelig lille til at være statistisk signifikant.

For at sikre at z-testen er pålidelig må nogle bestemte betingelser overholdes. Da z-testen bruger populationens gennemsnit μ og populationens standardafvigelse σ, er det vigtigste at disse kendes. Stikprøven, hvis størrelse benævnes n, må trækkes fra et tilfældigt udsnit af populationen; ellers må en anden test benyttes. Endvidere skal populationen være normalfordelt. Teststørrelsen udregnes:

z=x¯−μσ/n{\displaystyle z={\frac {{\bar {x}}-\mu }{\sigma /{\sqrt {n}}}}}image

hvor x¯{\displaystyle {\bar {x}}}image angiver gennemsnittet af stikprøven. Teststørrelsen sammenlignes med signifikansniveauet α.

Hvis der er mindre end 30 observationer i stikprøven, bliver man nødt til at bruge t-testen, hvor bruges i stedet for normalfordelingen. Antal frihedsgrader, som er parameter til t-fordelingen, er lig n-1.

Referencer

  1. Agresti, 2018, s. 175-176

Litteratur

  • (2018). Statistical methods for the social sciences (Fifth ed.). Upper Saddle River: Pearson.
imageSpire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.

wikipedia, dansk, wiki, bog, bøger, bibliotek, artikel, læs, download, gratis, gratis download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, billede, musik, sang, film, bog, spil, spil, mobile, Phone, Android, iOS, Apple, mobiltelefon, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, sonya, mi, PC, web, computer

Udgivelsesdato: Februar 27, 2025, 16:53 pm
De fleste læses
  • Kan 10, 2025

    Smertebehandling

  • Kan 18, 2025

    Smagsløg

  • Kan 18, 2025

    Smyrna

  • Kan 08, 2025

    SVT 1

  • Kan 08, 2025

    SU (flertydig)

Daglige
  • Science fiction

  • Udenjordisk liv

  • Kultstatus

  • Doctor Who

  • Ruslands invasion af Ukraine 2022

  • Trumps ønske om at erhverve Grønland

  • Nicușor Dan

  • Sissal

  • Lars Fruergaard Jørgensen

  • Stockholms Tunnelbana

NiNa.Az - Studio

  • Wikipedia

Tilmelding af nyhedsbrev

Ved at abonnere på vores mailingliste vil du altid modtage de seneste nyheder fra os.
Kom i kontakt
Kontakt os
DMCA Sitemap Feeds
© 2019 nina.az - Alle rettigheder forbeholdes.
Ophavsret: Dadaş Mammedov
Top